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BATTERY TECHNOLOGIES (@AIT)
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DECREASE IN TOTAL CAPACITY AS INACTIVE /T,

MATERIAL IS ADDED

Cross-cutting areas -
Manufacturability and recyclability
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Accelerated discovery of interfaces
and materials - BIG-MAP

Smart functionalities -
Sensing and self-healing

https://battery2030.eu/digitalAssets/860/c_860904-I_1-k_roadmap-27-march.pdf
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FROM CONCEPT TO CELL PRODUCTION

Schematic of the Overall Battery R&D Process from Conception to Production

Concept Generation

Staffing One

Materials Batch Grams

Advanced
Concept Validation Research Applied Research  Development Development
Anideaina Scale-up Lab/pro®type Confirm research Design initial
creative mind experiments cells results cell product
Limited Characterize Initial map of Establish initial Design and
exploratory fundamental performance, product format construct unit
laboratory properties of rate, cycling, operations
experiments concept, chem.  temperature, etc. Develop unit
composition, assembly Scale-up
Establish structure, etc. Scale-up of operations prototype cell
repeatability of material fabrication
performance Evaluate size preparation Make, test, and
of commercial characterize 5 to Run3to5
Is there a market?  gpportunity Preliminary 10 cell lots of sizable pilot
market scope 100 cells each line-factory trials
Construct Finalize
business plan business plan
Market
development
Timing One to three years  One to three years Three to four years Three to five years  Two to four years
Two to four Four to ten Eight to sixteen Twelve to thirty
10t050¢ 100 g to 1 kg 1kgto10 kg 10 kg to 100 kg

) Production
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Rosa Pala

cin, Battery2030+ excellence seminar,

01.02.2022
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OVERVIEW - ROADMAP

I Batterietechnologie — Auslauf der Technologie jeweils unbekannt

Gen5 Technologieiibergang mit Anderung
LifO= (Li air) von Teilbereichen der Produktion -
Neue Zell-
Gen 4 generationen

All-solid-state mit Lithium-Anode, - -
Konversionsmaterialien (i.W. Li/S)
- optimierte

Gen 3b
Kathode: HE-NCM, HVS (high-voltage spinel)
Anode: Silizium/Kohlenstoff

evolutiondre

Weiterentwicklung Li-lonen-
Gen 3a Zellen
Kathode: NCM622 bis NCM811, Anode: -
Kohlenstoff (Grafit) + Siliziumanteil (5-10%)
Gen 2b
Kathode: NCM523 bis NCM622 -
Anode: 100% Kohlenstoff Lilonen-
Gen 2a Zellen
Kathode: NCM111 -
Anode: 100% Kohlenstoff
Gen 1
Kathode: LFP, NCA
Anode: 100% Kohlenstoff
2015 2020 2025 2030 Erster
Einsatzzeitpunkt
im Fahrzeug

Nationale Platform Elektromobilitét: Roadmap integrierte Zell- und Batterieproduktion Deutschland, Jan 2016



PERFORMANCE OF LIBS SINCE DEVELOPMENT

A 1970s 1990s 2010s 2030s
" Si-based LIBs
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Nature Communications volume 12, Article number: 5459 (2021)



https://www.nature.com/ncomms

POST-LI TECHNOLOGIES & CELL DESIGN
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WHAT IS THE FUTURE?

To enhance the lifetime and safety of batteries

Materials Acceleration Platform

Battery Interface Genome

Essential to secure new
sustainable materials with high
energy and/or power
performance and that exhibit
high stability towards unwanted
degradation reactions. Special
attention must be paid to the
complex reactions taking place
at the many material interfaces
within batteries
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Uesi 3C, Can the new materials be
upscaled in a sustainable
way?

Can we recycle the new
cell concepts suggested?

STATIONARY
ENERGY STORAGE

E-MOBILITY

ATE-NpyTRAL

Battery 2030, Inventing the sustainable batteries of the future, Research Needs and Future Actions



RECYCLING AND 2NP LIFE

SUSTAINABLE ESSENTIAL Oy fiasateris
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Safe, Infinite Recycling Through an Established Circular Network

Essentialenergyeveryday.eu, 2019
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» Potential circular economy model for lithium batteries.

PRODUCT
USE

reuse 05 4 04 i

PRODUCT
END OF LIFE

Vpsolar.com, 2019



Research pilot line
In a nutshell...

SSOLITH
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R&D on energy storage technologies:

From cell manufacturing and prototyping,
through material & component screening,

simulation to cell testing.

Pouch cell production facilities for
small series up to 10 Ah/cell

in Austria‘s only dry room



ENERGY CONSUMPTION OF CELL | |
PRODUCTION

GHG emission battery production
Depends on many factors
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Koch etal. Koch et al. VW Emilsson & Emilsson & VW Emilsson & Emilsson & Northwolt  Morthvolt
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Energy consumption of cell production based on NMC cathode materials
Source: VDI/VDE, study 2021
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HOW TO ACHIEVE GREEN CELL
PRODUCTION?

Reduction of inactive materials
* Increased energy density

Energy efficient processes
* Solvent free or reduced processing
* Dryroom environment reduction

Raw materials
e  CRM-free cell chemistries

Longevity and Recycling
* Smart Cells and Cell Design

AI I AUSTRIAN INSTITUTE
OF TECHNOLOGY

Reduction of inactive Energy efficient
materials processes

Longevity and
selection Recycling

Raw materials
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REDUCTION OF INACTIVE MATERIALS

Challenges of thick electrodes Multilayer approach
*  Delamination Variation of:

*  Binder migration Active materials
*  Residual solvents Porosities

*  High resistance Binder content

*  Poor electrochemical performance etc. ...
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Neidhart et al., Nanomaterials 2022, 12/3, 317.
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IMPACT OF ENERGY OPTIMISED PROCESSES

Potential energy and cost reduction from sustainable Li-ion cell production.

Conventional Proposed new Potential energy Potential cost reduction
production process process/concept reduction
NMP-based slurry Solvent-reduced H-O 0.4% 4-6%
preparation based slurries
Conventional electrode Thick electrodes with 25-30% 20-25%
thicknesses high areal capacity

>4 mAhcm™
Electrode coating with Single-unit approach of 2% 4%
following drying unit and | drying and compacting
compacting electrodes
Mechanical electrode Laser-cutting of 3-4% 2-3%
cutting electrodes
Dry room for slitting, Energy-efficient drying 15-20% 10-12%
stacking, electrolyte unit and direct transfer to
filling production steps electrolyte filler
Electrolyte filling in One-step filling with less 0.2% 5-10%
several steps and under electrolyte amount
vacuum
Conventional formation Improved energy and time 1-2% 8-10%
and ageing efficient formation and

ageing procedures
Conventional scrap rate Reduced scrap rates n.a. 1-3%

of 5%

of maximum 1%

8.00E+00
7.00E+00
6.00E+00
5.00E+00
4,00E+00
3.00E+00
2.00E+00
1.00E400

0.00E+00

Climate change impact (kg CO2 eq/ kg cathode paste)

-19%

Baseline: NMP solvent water-based paste

dry process

M LFP precursor production LFP cathode paste production

Source: EMPA, Green Batteries Conference 2021.
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INNOVATION NEEDS

» Green manufacturing

« Advanced equipment

* Increasing yield

* Implementation of generation 4 into production
» New processes for cell production

* New alternative materials for CRM replacement
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